

Outline

- Price Elasticities
- Partial Equilibrium
- A Partial Equilibrium Model of the

Global Coal Market

Price Elasticities

Own price elasticity: the percentage decrease in the demand of a fuel as its price increases by 1% holding other prices constant

But:

• energy price increases motivate interfuel substitution

• the interfuel substitution leads not only to decreases in the demand for the fuel whose price increases, but also to increases in the demand for competing fuels

• as a result aggregate energy demand is reduced by less than the demand for a single fuel

Price Elasticities

Example:

Let E_1 , E_2 be demands for two types of energy, and let P_1 , P_2 be the corresponding prices. Let the prices and demands be related by

 $E_1 = 1.2 - P_1 + 0.8 P_2$

 $E_2 = 1.2 + 0.8 P_1 - P_2$

What are the own- and cross-price elasticities, and the aggregate elasticity of demand ?

Suppose $p_1 = p_2 = 1$ \Rightarrow $E_1 = 1, E_2 = 1$ Let $p_1 = 1.1$ \Rightarrow $E_1 = 0.9, E_2 = 1.08$ $E_T = E_1 + E_2 = 2.4 - 0.2 p_1 - 0.2 p_2$; $p_T = (p_1 + p_2)/2$ $p_1 = 1, p_2 = 1$ \Rightarrow $E_T = 2$; $p_T = 1$ Let $p_1 = 1.1, p_2 = 1$ \Rightarrow $E_T = 1.98$; $p_T = 1.05$

Price Elasticities

Total price changes	1995		2000	
	Gas	Electricity	Gas	Electricity
1. Minor increase (+20%)	-0.07	-0.07	-0.13	-0.11
2. Major increase (+100%)	-0.04	-0.05	-0.08	-0.07
3. Major decrease (-50%)	-0.05	-0.06	-0.10	-0.09
4. Gas only (+20%)	-0.08	(+0.02)	-0.15	(+0.03)
5. Electricity only (+20%)	(+0.01)	-0.09	(+0.02)	-0.13

Price elasticity for household gas and electricity consumption for different energy price cases

Price elasticity* for household gas and electricity consumption in the presence of policy measures (year 2000)

Policy variants	Gas	Electricity
No policy case	-0.138	-0.124
Standards only	-0.113	-0.124
Subsidies only	-0.142	-0.119
Taxes only	-0.125	-0.100
Taxes/subsidies/standards	-0.103	-0.091

* For a change of +20% in the price without regulatory tax.

Ref.: Boonekamp, P.G.M., 2007. Price elasticities, policy measures and actual developments in household energy consumption – A bottom up analysis for the Netherlands_, *Energy Economics*, Vol.29 (2),pp.133-157.

Price Elasticities

Average energy price	elasticities in	the empirical	literature
----------------------	-----------------	---------------	------------

	Short term	Long term
Electricity	-0.126*	-0.365*
Natural Gas	-0.180***	-0.684*
Gasoline	-0.293***	-0.773***
Diesel	-0.153**	-0.443***
Heating oil	-0.017	-0.185

*** Significant at the 1% level.

** Significant at the 5% level.

* Significant at the 10% level

Xavier Labandeiraa, b, José M. Labeagac, Xiral López-Otero, A meta-analysis on the price elasticity of energy demand, Energy Policy Volume 102, March 2017, Pages 549–568

Elasticity of Supply

 $_{\odot}$ The price elasticity of supply shows the responsiveness of the quantity supplied to a change in its price.

 \circ η_s = % change in quantity / % change in price

• The elasticity is a dimensionless representation of the slope of the supply curve

 For policy analysis models, the elasticity of supply is an input; in econometric exercises, the elasticity of supply is often a model output

 \circ In equilibrium models the elasticity of supply can be used with a reference price and a reference quantity to define a linear *supply function*

$$q_{s}(p) = \overline{q_{s}} (1 + \eta_{s} (p_{s} / \overline{p_{s}} - 1))$$

where

 \overline{q}_{s} is the reference supply quantity

 \overline{p}_s is the reference supply price

Elasticity of Demand

 \circ Similarly, a demand function can be calibrated to match a reference price-quantity pair

$$q_d(p) = \overline{q}_d (1 + \eta_d (p_d / \overline{p}_d - 1))$$

where

 \underline{q}_d is the reference demand quantity

p_d is the reference demand price

A Simple Model of the Global Coal Market

 \circ The basic structure of the model is summarized as

 $\sum_{r} S_{r}(p) = \sum_{r} D_{r}(p, t_{r})$

where

p is the world market price of coal $S_r(p)$ is the coal supply in region *r* t_r is the specific tax on coal in region *r* $D_r(p, t_r)$ is coal demand in region *r*

 \circ The supply and demand functions are linear, hence

 $S_r(p)=a_r + b_r p$

 $D_r(p, t_r) = \alpha_r - \beta_r \left\{ p \times (1 + t_r) \right\}$

- A Simple Model of the Global Coal Market
- o Benchmark inputs include base year supply and demand
- o *Econometric inputs* include elasticities of supply and demand in each of the regions
- Policy inputs include tax rates
- *Equilibrium* is defined by a single variable: the international coal price
- \circ The equilibrium determines
 - \checkmark supply and demand for each of the regions
 - ✓ leakage rate

• Minimize the squared deviation between agregate supply and aggregate demand

$$\Delta = \left\{ \sum_{r} (S_r - D_r) \right\}^2$$

A Simple Model of the Global Coal Market: Policy Analysis

- Finding an *equilibrium price*
- Applying a *carbon tax* in Annex B countries
- Evaluating the *leakage rate*

 $Leakage = \frac{increase in coal use in non-Annex B countries}{decrease in coal use in Annex B countries}$